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Reliability and operational safety of the railway transport in large part 

depends on the correct reception of power from the catenary by a traction 

vehicle. In this paper, a special attention was paid to consumption of 

sliding strips of a current collector (AKP-4E and 5ZL type), measured 

during periodic reviews of locomotives EU07 and EU09. Pantograph 

data, collected during periodic technical reviews, was provided by one of 

the biggest railway carrier in Poland. 

To investigate the reliability assessment of the selected pantograph strips 

a non-destructive degradation analysis was carried out. On the basis of 

the wear measurements of the strips and the critical value of wear, the 

failure distribution model was developed. It was used to obtain the selected 

reliability characteristics and to predict the lifetime of the strips.  

In next step, failure analysis was conducted. Such analysis was carried out 

for two variants to compare the effectiveness of Artificial Intelligence 

Prevention method. In the first variant, analysis was based on data 

selected during standard technical review of a pantograph. Second variant 

considered Artificial Intelligence method to predict and prevent cases of 

pantograph strip damage. Applied and tested methods of artificial 

intelligence were mainly related to classification algorithms. For this 

purpose was used techniques such as: decision trees (Complex Tree 

Medium Tree, Simple Tree), supporting vector machines (Linear SVM, 

Quadratic SVM, Cubic SVM, Fine Gaussian SVM, Medium Gaussian 

SVM, Coarse Gaussian SVM), methodic of nearest neighbors (Fine KNN, 

Medium KNN, Coarse KNN, Cosine KNN, Cubic KNN, Weighted KNN) or 

classifiers (Boosted Trees, Bagged Trees, Subspace Discriminant, 

Subspace KNN RUS Boosted Trees). 

The results of conducted analyzes may be used to build a preventive 

maintenance strategy of the pantographs. The applied reliability models 

of wear propagation can be extended by the parameters of the cost and 

repair time becoming the basis for estimating the costs of operation and 

maintenance. 
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1. INTRODUCTION   

 

Reliability and safety during technical operation of 

the railway vehicels depend largely on the correct power 

reception from the catenary system by a traction vehicle.  

Currently, there are many scientific papers regarding the 

pantograph–overhead catenary system. These works 
concern mainly numerical methods of simulation of 

dynamic phenomena [1–7], analysis of contact force [8–

15], as well as wear of sliding strip material [16–24]. The 

papers focus particularly on material properties 

depending on the composition of the strip. A wide 

interest in the problems of the pantograph–overhead 

catenary system results from the desire to ensure the best 

cooperation and reduce the operating costs. 

 Technical condition of pantograph is checked on 
every technical review. According to the preventive 

maintenance strategy related to the pantograph, we 

distinguish the following activities:  

• control reviews (every 2 - 4 days),  

• periodic reviews (once a month),  

• large reviews (every 250 thous. km ± 10%),  

• smaller repair (every 500 thous. km),  

• bigger  repair (every 1000 thous. km ),  

• major repair (after the course of 4000 thous. km). 

 

During each review, among other things, a visual 

inspection of a current collector is made which takes into 
account checking the current collector components 

without disassembly. 
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A component which is in direct contact with contact 

wire of overhead catenary line is a carbon sliding strip.  

Because of that, when strip is damaged, it can cause 

danger and expensive damages to catenary line. The 

problem associated with the correct determination of the 

technical condition is therefore very important. In this 

paper, a special attention was paid to consumption of 

sliding strips of a current collector (AKP-4E and 5ZL 

type), measured during periodic reviews of locomotives 
EU07 and EU09.  

 
2. PANTOGRAPH SLIDING STRIPS  

 

A verification of slides state is performed on every 

technical review. At the time of examination it should be 

remembered that sliding strip exchange can be caused by 

three types of destructive processes – wear and small 

failures caused by wear; failures of a sliding strip; and 

changes in pantographs’ regulations.  

a) 

 

b) 

 
Figure 1. Damages of the edge of carbon sliding 
strip: a) minor surface damages; b) major surface 
damages 
 

In case of wear a reduction in the thickness of strip 

may be noticed, as a result of the abrasion processes and 

electro-eroding phenomena. The wear process has 

approximately monotonous change in the thickness of the 

sliding strip.The reason for replacing the sliding strip in 

this case is exceeding the recommended strip thickness. 
If some small defects will occur during which do not 

cause loss of the strip ability of current collection – e.g. 

wear of the edge of the strip – there is no need to replace 

the strip (Fig 1a).  

a) 

 
 

b) 

 
 

c) 

 
 

d) 

 Figure 2. Wear of sliding a) material melting as a 
result of arcing; b) detachment of piece of carbon 
strip; c)crack of a strip; d) peeling off the top layer of 
a strip [25] 

 

Such failures are caused by impact on the hard points 

of catenary and it is often assumed that minor surface 

damage may not exceed 30% of the surface of the carbon 

strip. However, if there is one major damage (Fig 1b), the 

strip should be replaced, because it may damage the 

overhead line. 

In case of replacement caused by damage, there are 

undertaken steps aimed at evaluating criteria such as: 

• material melting as a result of arcing and damages 

caused by arcing (Fig. 2a), 

• detachment of a piece of carbon strip (Fig. 2b), 
• cracks of  a sliding strip (Fig. 2c), 

• peeling off the top layer of a carbon strip Fig. 2d). 

During maintenance there are also some changes in 

pantograph regulations, which can caused uneven wear 

of sliding strips. In such case, if the difference in strip 

thickness is big, the strips should be replaced. If the 

thickness is different in a strip but acceptable, then then 

the slide should be turned 180 degrees.  

 

Figure 3. Metodology first step – Machine Learning and failure analysis for variant I
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3. METODOLOGY 

 

In order to reduce the number of damage to the strips, 

a model based on the Machine Learning was applied. In 

order to develop such a model, it was necessary to 

process the archival data by the supervised learning 

method, and then to select and to make an implemention 

of the best predictive model for simulation. 

This method is presented in detail in Figure 3 and 

Figure 4. Figure 3 shows the first stap of anaylsis in 

which, apart from training, damage analysis was made 
according to archival data (Variant I). The second step, 

presented in Figure 4, contains the prediction of the 

technical condition of the current collector and the 

damage analysis for the data modified in accordance with 

the prediction results (Variant II). Step I includes also the 

reliability assesment for the further processing of the 

output data. 
 

 
Figure 4. Metodology second step – Prediction and 
failure analysis for variant II 
 
3.1 Reliability Assesment 
 

 Based on the technical reviews of the locomotives 

types EU07 and EU09, the empirical data were collected 

which correspond to the failures of the selected 
pantograph types. The data were analysed according to 

the Weibull analysis [IEC 61649:2008 Weibull analysis] 

and the parameters of 2-p Weibull distribution were 

obtained, as shown in the Table 1. The Weibull 

parameters were calculated using the Maximum 

Likelihood Estimation method included in Reliasfoft 

Weibull++ software, which allows to take into account 

the confidence bounds. 

 
Tabel 1. Parameters of Weibull distribution for the 
analysed types of pantograph 
 

Parameters 
of Weibull 

distribution 

DSA-150 AKP-4E 5-ZL 

β 1.470337 1.153632 1.329664 

η (days) 74.619087 119.655763 134.032580 

 

Goddness of fit for the considered Weibull 

distribution with two sided confidence bounds on 

reliability with significance level of 0.05 for the selected 

pantograph types are shown in the Figures 6a-c.  

 

 

Probability density function for the Weibull 

distribution is given as follows [1]: 

𝑓(𝑡) =  
𝛽

𝜂𝛽
𝑡𝛽−1𝑒𝑥𝑝 [− (

𝑡

𝜂
)

𝛽

] (1) 

 

Based on the calculated parameters of a Weibull 

distribution, a probability density function may be plotted 

in order to compare the values of time at which the 

probability of occurrence of failure reaches the 

maximum, tf=max (Figure 5). This will be the basis for the 

further failure analysis and supervised machine learning. 

 

 
Figure 6. Probability density function for th 
selected types of pantograph: a) DSA-150, b) 
AKP-4E, c) 5-ZL 

 

where: 
𝛽 − 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝜂 − 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

a) b) c) 

   
Figure 5. Weibull Probability plot for th selected types of pantograph: a) DSA-150, b) AKP-4E, c) 5-ZL 
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Based on the probability density function, a mean 

time to failure may be calculated as: 

 

  𝑀𝑇𝑇𝐹 =  ∫ 𝑡 ∙ 𝑓(𝑡)𝑑𝑡
∞

0
 (2) 

  

 

The vaules of MTTF and tf=max are presented in the 

Table 2. 
 

Table 2. Calculated MTTF and tf=max parameters for 
the selected types of pantographs 

Type of pantograph MTTF (day) tf=max (day) 

DSA-150 67,53 35 

AKP-4 113,77 21 

5-ZL 123,25 48 

 
 

The obtained results indicate that the lowest value of 
MTTF is for the DSA-150 pantograph, which may 

suggest its lowest durability. However, it should be taken 

into account that the calculated MTTF values refer to the 

theoretical mean value of time at which the failure may 

be observed, according to the approximation of Weibull 

distribution. Therefore, the more important information 

is the value of operation  time at which the failure 

occurrence is the most probable. From the practical 

purposes such a value may indicate the actual durability 

of the pantograph. This approach may indicate the worst 

durability for the AKP-4 pantograph. 
 
3.2 Data preparation for the Machine Learning 
 

Reliability assesment and knowledge of experts 

allowed to prepare identification algorithms for technical 

condition and for replacement causes. The exemplary 

algorithms are shown below: 
 

𝑊𝑜𝑝 = 1 ⇔ 
𝑁𝑙𝑖+1 = 𝑁𝑙𝑖  ∧ (𝑇𝑜𝑝𝑖+1 ≠  𝑇𝑜𝑝𝑖  ∨  𝑁𝑜𝑝𝑖+1 ≠  𝑁𝑜𝑝𝑖) 

(2) 

 
𝑊𝑛 = 1 ⇔ 

(𝑁𝑙𝑖+1 = 𝑁𝑙𝑖) ∧ (𝑇𝑜𝑝𝑖+1 =  𝑇𝑜𝑝𝑖) ∧ (𝐶𝑜𝑝𝑖 ≠ 1) ∧
 ((𝐺𝑛1𝑖 − 𝐺𝑛1𝑖+1 < 0) ∨ (𝐺𝑛2𝑖 − 𝐺𝑛2𝑖+1 < 0))  

(3) 

 
𝑁1 = 1 ⇔ 

𝑁𝑜𝑝 = 1 ∧ 𝑁3 = 0 ∧ (𝐺𝑛1 < 32 ∨ 𝐺𝑛2 < 32) 
(4) 

 
𝑁2 = 1 ⇔ 

𝑁𝑜𝑝 = 1 ∧ (𝑁1 + 𝑁3 = 0) ∧ ((𝐺𝑛1 > 33) ∨ (𝐺𝑛2
> 33)) 

(5) 

 
𝑁3 = 1 ⇔ 

𝑁𝑜𝑝 = 1 ∧ (|𝐺𝑛1 − 𝐺𝑛2| ≥ 2) 

(6) 

 
Developed algoritms, in turn, allowed to prepare 

input data for machine learning. Learning data – 

predictors, are presented in Table 1. 

 
Table 3. Machine Learning Predictors 

Name Symbol 

Review number 𝑖 
A new measuring cycle 𝐶𝑛𝑒𝑤 

The number of days since the replacement 𝐷 

The quarter of the year 𝑄 

Current collector type 𝑇𝑜𝑝 

Front / rear current collector 𝐶𝑐 

Difference in the N1 thickness between reviews 𝑇ℎ1 

Difference in the N2 thickness between reviews 𝑇ℎ2 

Earlier technical condition 𝑆 

The reason for the replacement 𝑁 
 
 

3.3 Prediction model 
 

Machine learning is currently used in many fields. In 

the paper, the predicted model is based on the algorithms 

for the classification of machine learning. For the 

development of the predictive model, it was decided to 

use the MATLAB environment due to its strengths 

associated with machine learning. 

It has a high quality function library. The algorithms are 

compliant with industry standards, allowing to reduce the 

time required to develop solutions to the minimum. The 

tools used to validate the model are embedded in the 

application, making the developed model to be easily 
evaluated. 

In order to develop the best predictive model, the 

following methods were tested: 

decision trees (Complex Tree, Medium Tree, Simple 

Tree), supporting vector machines (Linear SVM, 

Quadratic SVM, Cubic SVM, Fine Gaussian SVM, 

Medium Gaussian SVM, Coarse Gaussian SVM), 

methodic of nearest neighbors (Fine KNN, Medium 

KNN, Coarse KNN, Cosine KNN, Cubic KNN, 

Weighted KNN) or classifiers (Boosted Trees, Bagged 

Trees, Subspace Discriminant, Subspace KNN RUS 
Boosted Trees). 

Among the methods of classifying machine learning, 

the method of decision trees proved to be the best. Below, 

Figure 5 presents a graphic representation of the 

Complex Tree model. The tree in this form reflects how 

the classification decisions were made on the basis of 

attributes.  

In proposed model, the maximum number of splits 

was 100; it was applied Ginis Diversity Index as a split 

criterion, and there was none surrogate decision split.  

 
Figure 7. Complex Tree 
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The analysis of errors in the assignment to different 

classes was made with the help of a confusion matrix. 

The matrix (3 × 3), where the lines correspond to the 

correct decision classes, and the columns with the 

decisions predicted by the classifier are shown in Figure 

6. At the intersection of the row i and columns j is the 

number of examples originally belonging to the i-th class, 

and included in the j-class. 

As it results from the evaluation of the developed 
model, the correctness of the classification is about 81%. 

However, the prediction of the damage itself is key to 

reducing the damage of the sliding strips. In the model it 

was defined as conditional technical condition (class 2). 

It means that in the next time interval it will be necessary 

to replace the sliding strip. The prediction of this state 

thus makes it possible to reduce damage to the overlays. 

 

 
Figure 8. Confusion Matrix for Decision Tree 

 
4. FAILURE ANALYSIS 

 

Damage analysis included two variants. Variant I was 

based only on processed archival data. For the analysis of 

Variant II, data from technical reviews modified by the 

predictive model were used. The structure determined 

during the preliminary data processing in step 1 was also 

used in step II, thanks to which it was possible to compare 

the results. 

Below, Figure 7 shows the correctness of the 
classification of technical states. The three technical 

states used mean as follows: 

1 - possibility of further use, 

2 - limited possibility of further use, it will be necessary 

to replace the overlay for the next inspection 

3 - no use, it is necessary to replace the overlay 

  
Figure 9. Correctness of classification of technical 
condition 

 

Analyzing the data in variant I, there were 47 

damages to the cap or to the collector. In variant II (after 

machine learning), only 23 were noted. The use of the 

presented model allows to reduce damage by about 50%. 

 
5. CONCLUSION  

 

In conclusion, the presented metodology is based on 

Artifitial Inteligence. Failure analysis is necessary for 

preparing the input data correctly for both the variants. 

Variant I concerns the analysis only of data obtained 

during the technical review, when variant II is based on 

the classification machine learning method, developed 
under this article. 

Results show that predicion of a technical condition 

can reducesliding strip damages by about 50%. 

Therefore, the costs related to the repair of damaged 

railway infrastructure caused by the poor technical 

condition of the collector can be significantly reduced. 

The application of the developed method would also 

enable the reduction of railway delays caused by damage 

to the current collector system - the traction network. 

Further research will focus on the development of a 

predictive model that allows 100% prediction of damage 
so that its negative effects can be eliminated. 
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